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Abstract interpretation is a theory for approximating the semantics ofdiscrete dynamic systems, e.g. computations of programming languages.
1 An Historical Perspective
Abstract interpretation [9] can be traced back to data-ow analysis (see asurvey in [35]) and the need for a posteriori veri�cation of such ad-hoc pro-gram analysis algorithms. Abstract interpretation is often understood inthe limited sense of pseudo-evaluation [40], that is of program analysis byrunning an abstract interpreter using abstract instead of concrete values. Aclassical example of such a pseudo-evaluation is the rule of signs [47]. Byconsidering convergence acceleration methods such as widening/narrowing[8], one can extend the idea to in�nite sets of abstract values. Programinversion can be used to explain backward program analysis methods ofthe same vein. However more elaborate program analysis methods such asthe static determination of invariants in the form of a conjunction of linearinequalities holding among values of the variables at each program point[20] is closer to program proof methods than program evaluation by assign-ment of abstract values to variables. This was understood in [12] whichproposes a framework for constructing semantics abstract of transition sys-tems (i.e. small-step operational semantics) and designing abstract semanticdomains compositionnally (using e.g. reduced products, disjunctive comple-tions, etc.).
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An early and conceptually important application of abstract interpre-tation was strictness analysis introduced by [38]. In the context of a lazy�rst-order functional language, it consists in studying the de�nedness of afunction call f(x1; : : : ; xn) in terms of the de�nedness (nontermination orrun-time error) of the parameters x1, : : : , xn. To handle nontermination,denotational semantics was considered more adequate than operational ones[41, 42, 43].Using the idea of lifting an approximation of data in a poset domain Dto monotonic functions D 7! D, as introduced in [11] for �rst-order proce-dures with value-result parameters, [4] lifted strictness analysis of functionalprograms at higher-order. This led to a stream of research on abstract in-terpretation, essentially based on denotational semantics which is (see [1]and [29] for surveys where this point of view is prominent) which is mainlyadequate for functional languages whereas operational-based abstract inter-pretation (see [6] for an early survey where this point of view is prominent)turned out to be more adequate for imperative, logic (see [22] for a survey)and more recently concurrent, distributed and object-oriented languages.Both frameworks can be uni�ed [17] on the basis of [12], by lifting opera-tional semantics to handle in�nite behaviors [16], considering the equivalencebetween rule-based and �xpoint presentations of semantics speci�cations [18]and viewing denotational semantics as part of a hierarchy of abstractions ofoperational semantics [16].
2 Principles of Abstract Interpretation
A semantics S of a programming language L associates a semantic valueS[[p]] 2 D in the semantic domain D to each program p of L. The semanticdomain D can be transition systems (for small-step operational semantics),pomsets, traces, relations (for big-step operational semantics), higher-orderfunctions (for denotational semantics), etc. D is usually de�ned composi-tionnally by induction on the structure of run-time objects (computations,data, etc.). S is de�ned compositionnally by induction on the syntacticalstructure of programs, using e.g. �xpoint de�nitions to handle iteration,recursion, etc.An empirical approach to abstract interpretation consists in a priorichoosing a problem-speci�c abstract semantics domain D] and an abstractsemantics S] 2 L 7! D] which is designed intuitively for a speci�c languageL. Then safety, correctness or soundness is established by proving that a
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soundness relation � [39] satis�es:
8p 2 L : �(S[[p]]; S][[p]])

If the abstract semantics is computable (D] is usually assumed to be �nite),we can infer that the abstract interpretation is sound in the sense that:
S[[p]] 2 fS j �(S; S][[p]])g

which may be su�cient to prove program properties e.g. that some \pro-grams cannot go wrong". This approach has the advantage of theoreticalsimplicity. By multiplication of super�cial di�erences in the presentationof the abstract semantics S][[p]] (e.g. rule-based versus �xpoint) and morefundamental variations on the choice of the abstract domain (correspondingto di�erent and sometimes non-comparable degrees of approximation), onerapidly obtain an abundant literature which is di�cult to gulp down andunderstand synthetically. Moreover, the choice of D] and � o�er no guide-line for the design of the abstract semantics S] with respect to the concretesemantics S.The approach propounded in [9, 12] is constructive in the sense that oncethe standard semantics S and an approximation � are chosen, one can derivea best choice for the corresponding abstract semantics S]. More preciselylet us call elements of the powerset:
DColl def= }(D)

program (concrete) properties. De�ne SColl 2 L 7! DColl to be the collectingsemantics:
SColl[[p]] def= fS[[p]]g

(This is a conceptual step, since no other detailed speci�cation of SColl isneeded (but for the design of formal proof methods).) SColl[[p]] is the strongestprogram property. We have seen that an abstract property P , such asfS j �(S; S][[p]])g above, is weaker in that SColl[[p]] � P . We call � theapproximation ordering. Now the abstraction function is a map � 2 DColl 7!DColl. We call �[D] def= f�(S) j S 2 Dg the abstract domain. We often use anisomorphic representation D] for �[D] and directly de�ne � 2 DColl 7! D].An example would be the approximation of a trace-based semantics by arelational/denotational semantics:
�(P ) def= fhs0; sni j s0s1 : : : sn 2 Pgfhs0;?i j s0s1 : : : 2 P is an in�nite traceg

Another approximation, ignoring distinction between �nite and in�nite com-putations, would be the approximation of traces by sets of states:
�(P ) def= fsi j 9s0s1 : : : si : : : 2 Pg
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which is adequate for safety/invariance properties. If states si map iden-ti�ers X 2 I to values, then a further attribute-independent approximationconsists in ignoring intervariable dependencies:
�(P ) def= Y

X2I
fs(X) 2 Pg

Once such abstract domain D] and abstraction function � have beenchosen, it remains to derive the abstract semantics S][[p]], p 2 L. We proceedcompositionnally, by induction on the syntactic structure of programs p inorder to follow that of S[[p]]. The price to pay is that in general the ideal�(SColl[[p]]) has to be approximated by S][[p]] � �(SColl[[p]]). For example,consider a �xpoint de�nition:
S[[p(p1; : : : ; pn)]] def= lfpv Fp[S[[p1]]; : : : ; S[[pn]]]

For simplicity, we consider the simple case when the computational order-ing v coincide with the approximation ordering �. Assuming, by inductionhypothesis, that we know a sound abstract semantics for the program com-ponents p1, : : : , pn:
�(SColl[[pi]]) � S][[pi]]; i = 1; : : : ; n

then we look, by algebraic formula manipulation, for F ]p satisfying for allC1, : : : , Cn 2 DColl:
�(fFp[S1; : : : ; Sn] j 8i = 1; : : : ; n : Si 2 Cig) � F ]p [�(C1); : : : ; �(Cn)]

in order to conclude (under suitable hypotheses, see [12]) that:
�(lfpv Fp[C1; : : : ; Cn]) � lfpv] F ]p [�(C1); : : : ; �(Cn)]

This leads to the de�nition of the abstract semantics:
S][[p(p1; : : : ; pn)]] def= lfpv] F ]p [S][[p1]]; : : : ; S][[pn]]]

which is sound, by construction, so that no a posteriori veri�cation is nec-essary. When equality holds, we have a completeness property which isuseful to design hierarchies of semantics [15]. By identifying useful abstractalgebras consisting of an abstract domain D] and abstract operations F ]
corresponding to common primitive operations F used in the semantic def-inition of programming languages, on can design abstraction libraries ofgeneral scope. Finally, the abstraction can be parameterized with otherabstractions in order to obtain generic semantic de�nitions and abstractinterpreters.We have sketched an abstract interpretation framework based on ab-straction function �. Other alternatives (using a soundness relation �, aconcretization , an abstraction/concretization pair h�; i, : : : ) are studied
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in [13]. The abstraction function � is often chosen as the upper-adjoint of aGalois connection in order to ensure the existence of a best (most precise)approximation among all the possible sound ones. Other equivalent formu-lations using Moore families, closure operators, ideals, : : :where introducedin [12]. The case when the computational ordering v does not coincide withthe approximation ordering � in their concrete or abstract versions (as isthe case in comportment analysis) is considered in [17] in a language andsemantic-independent way.
3 Application of Abstract Interpretation to Pro-

gram Veri�cation and Analysis
Abstract semantics can be understood as speci�cations of proof methods.For example the Floyd-Naur/Hoare invariance proof method directly derivesfrom the observation that the existence of invariants I1, : : : , In, I satisfyingthe veri�cation condition:n̂

i=1S
][[pi]] v] Ii ^ F ]p [I1; : : : ; In](I) v] I

implies, as a direct consequence of Tarski's �xpoint theorem, that:�lfpv] F ]p [S][[p1]]; : : : ; S][[pn]]]� v] I
(see [7] for more details).The most popular use of abstract semantics S] is for the speci�cationof program analyzers also called abstract interpreters. The design is of-ten generic that is parameterized by abstractions for basic data or controlstructures. For program analysis, the abstract domainD] must be computer-representable. An important aspect of research of abstract interpretation isconcerned by the composable design of abstractions � by induction on themathematical structure of the semantic domain D (which, for typed lan-guages, often coincide with the type structure of the language) for all possi-ble data and control structures encountered in programming languages. Abasic idea is that abstracting an abstraction yields another abstraction. Forexample, sets of pairs (e.g. records with two �elds or program states consist-ing of a control and a data component) can be approximated in a relationalway [30] as a set of pairs of abstract properties:

�(A) def= fh�(fxg); �(fyg)i j hx; yi 2 Ag
A further attribute-independent abstraction leads to a less expensive but
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also less precise approximation of a set of pairs by a pair of abstract prop-erties:
�(A) def= h�(fx j hx; yi 2 Ag); �(fy j hx; yi 2 Ag)i

For basic control and data structures one is interested in general purposeabstractions. Let us consider a small range of samples of data abstractions:
� For attribute-independent abstractions of sets of vectors of numbers,one can consider signs [12], intervals [8, 9], simple congruences [26]generalizing parity [12]. For relational abstractions, one can considerlinear equalities [33], inequalities [20], congruences [27], congruencialtrapezoids [36], etc.
� For the context-free abstraction of formal languages, that is sets ofstrings on a �nite alphabet, one can consider regular expressions, gram-mars (thus making the link with set-based analysis [19]). Unitary-pre�x monomial decompositions of rational subsets of a free monoid(such as fX:tlm:hd:tln:hd:tlp j m = n = pg) [24] provide an exampleof context-sensitive abstraction. These abstractions can be used forpointer analysis based on location-free/storeless models of computa-tion [23].
� For the abstraction of sets of graphs, as used e.g. in store-based pointeranalysis pioneered by [31], one can refer to the survey [25].
For control structures, even in the limited case of interprocedural analy-sis, a complete survey would be necessary. For example and to remain verysuccinct, program loops involves solving an equation X = F ]̀(X) originating

from the �xpoint de�nition lfpv] F ]̀ of the abstract semantics S]` of a pro-gram `. This is one of the typical algorithmic problems involved in abstractinterpretation. One classical solution, when F ]̀ is a monotonic operator on a
poset hD];v]i with in�mum ?, is iteration: X0 def= ?, Xn+1 def= F ]̀(Xn) untilconvergence. Widenings [14], which can be understood as local dynamicchange of abstract semantic domain during �xpoint iteration, can be usedon one hand when least upper bounds are missing and on the other handto accelerate convergence (in large or in�nite domains). When the abstractdomain D] is a cartesian product, chaotic iteration methods are available[10]. Such demand-driven chaotic iterations can be generalized to �rst-orderequations f(X) = F ]p [f ](X) involved e.g. in interprocedural analysis usingthe idea that the function f needs to be known for some but in generalnot all its parameters, see [11, 3] and the reformulation as minimal function
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graphs in [32]. This generalizes at higher-order [45] but e�cient algorithmsfor solving such higher-order equations, including elimination methods, re-main to be studied. Observe that, contrary to e.g. type inference, soundness(and relative completeness) can be established once for all (may be parame-terized by basic abstractions for generic implementations) and not for eachparticular instance of the program analysis problem.The complexity issues in abstract interpretation have only been touchedupon, see e.g. [21, 30, 44, 46]. A common error is that abstract interpretationis though to be inherently exponential (as opposed to polynomial dataowanalysis). This can be exactly the contrary! It can be polynomial or poly-nomial on the average but exponential in pathological cases which are rareenough to be cut o� by widening (see e.g. [34] for polymorphic type inference�a la Hindley-Milner). In general, exponential costs can be avoided by usingwidenings introducing further approximation as analysis time elapses. Thecommon idea that program analyzers should be as fast as compilers does notnecessarily take the cost/bene�t trade-o� into account. Is it better to spend8 (night) hours of CPU time or 8 (day) hours of man-power for �nding acrucial programming error?
4 Applications of Abstract Interpretation
Abstract interpretation has been used for highly-performant compilers (e.g.strictness analysis), program transformation (e.g. determination of invari-ants for program vectorization and parallelization, binding-time analysis forpartial evaluation, etc.), test generation for program debugging, abstract de-bugging (involving abstract values/properties instead of concrete ones [2]),polymorphic type inference [37], e�ect systems, model checking [5], veri�ca-tion of hybrid systems [28], etc.
5 Conclusion and Research Perspectives
Although the designer of program analyzers may prefer empirical approaches,abstract interpretation is often an indispensable guideline to avoid concep-tual errors since it provides a methodology to design a formal speci�cation.Theoretical researchers working on semantics, proofs and program anal-ysis may �nd the abstract interpretation approach too demanding and preferpresentation methods looking brand new, often super�cially di�erent fromexisting ones.
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However there is a need for models and theories allowing for the syn-thetic understanding of the abundant literature on semantics, type systems,logics of computations, program veri�cation, program analysis, partial eval-uation, etc. A synthetic point of view consists in considering these topicsas involving the speci�cation of more or less re�ned or abstract semanticsof computations and observing that abstract interpretation is a constructivetheory for studying their relationship or better deriving them from one an-other. Although this methodology is more demanding than a speci�c studyfor each particular problem, it might be necessary to have these topics evolvefrom craft to science.A number of problems remain to be considered or more thoroughly stud-ied, e.g.:
� General frameworks formalizing the notion of semantic approximation;
� Models of computations (e.g. true concurrency) to be used in concretesemantics;
� Design of hierarchies of parameterized semantics for programming lan-guages (such as concurrent and object-oriented languages);
� Abstract domains for non-numerical objects (formal languages, graphs,types, etc.);
� Design of abstraction functions specifying di�erent program analysismethods in order to compare their relative power;
� Optimal combination of existing program analyses;
� Equation resolution and convergence acceleration methods;
� Formal or experimental study of the complexity/bene�t tradeo� ofprogram analyses;
� Design and implementation of general-purpose libraries of abstractdomains and their associated operations,
� Design of language-speci�c generic abstract interpreters.
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